由于操作过于频繁,请点击下方按钮进行验证!

器官芯片将取代动物实验 精准医疗可期

半导体产业的芯片概念开始应用到生技医疗领域,其中“器官芯片”将逐渐取代动物实验,长远目标是针对不同病患量身订制药物,达到精准医疗目的。

半导体产业的系统单芯片(System on Chip, SoC),是把多样功能整合成在一颗芯片里,再透过硅来移动电子,进而使系统运作,让电子产品发挥功能。 然这里所指的“器官芯片”(Organs-on-chips),则是将微量的化学物质或微生物送到模仿完整器官(如肺脏、心脏等)结构和功能的单元芯片,仿真出相同化学物质放到真实人类器官中,所可能会发生的状况。

换句话说,器官芯片不是创造人类整个完整器官,而是仿真人体器官中的最小功能单元,实现药物或化学物质在非活体环境(in vitro)中,研究活体环境(in vivo)的交互反应,用来了解、评估疾病、药物、化学物质与食物等对人类影响的3D芯片装置。

2015年英国年度设计奖,不是颁给谷歌的无人车,也不是清除海洋塑料计划,而是颁给美国哈佛大学韦斯生物启发工程研究所的器官芯片;这是英国年度设计奖,首度由医学领域获得大奖。 现代美术馆(MoMA)也将器官芯片纳为永久收藏。

动物实验成效未必适用人体

以韦斯生物得奖作品为例,就是仿真人类肺脏的器官芯片。 韦斯生物将半导体芯片的概念导入,将活的人体器官细胞植入芯片,使芯片可以仿真细胞在人体内的环境。 其芯片的主要架构,是在槽道中设置三个并列的流体信道,两边的信道是真空信道,中间的信道则是植入细胞的信道。

为了仿真肺脏构造,韦斯生物在中间信道的正中间放置一层布满小孔的生物薄膜,并在薄膜上铺满一层肺泡细胞,薄膜的另一面铺满血管细胞。 因此,薄膜上面可以流通空气,下面可以流通血液。

另外,两侧的真空信道也设计成可收缩的结构,可以同时带动中间的信道一同收缩,于是肺泡细胞也跟着收缩,再将空气与血液导入芯片,就可仿真正常肺脏运行环境。 同样地,如果要仿真肺脏感染或对特殊物质的反应,只要将病毒、养分、细胞或相关物质导入器官芯片,即可透过显微镜“看到”接下来可能发生的变化。

德国康斯坦茨大学毒理学教授Marcel Leist曾说:“人类绝对不等于70公斤的老鼠。 ”一语道出传统临床实验中的关键问题。

因为人类与动物的生理结构不同,为了实验需求,常将人类独有的癌细胞或其他病原,移植到老鼠、兔子或是猴子身上;问题是,即使在动物实验阶段结果良好,也无法保证转换到人类身上时,同样安全或同样有效果。 据统计,至少30%药物分子没有机会上市,就是因为毒性或人体肝脏无法代谢;这也是很多药无法通过临床一期(确认毒性)或临床二期(确定剂量及效性)的原因。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@blueai.net.cn。

网友评论 匿名:

分享到

相关主题