由于操作过于频繁,请点击下方按钮进行验证!

IBM将用人工智能布局未来医疗

BM研究室已经开始着手把这三项研究变成成熟的医疗工具,将公司现存的机器学习和人工智能系统与硅片、毫米波相控阵传感器等结合。

 试想,芯片比全球最好的实验室更厉害,可迅速拿出疾病的准确诊断;微型摄像机能从分子层面上检验药片的真假;系统可以光从语言中检查出此人患有心理疾病;IBM认为,这三个事都可以在几年之内做到,因为他们有大杀器:人工智能+新型硬件。

IBM研究室已经开始着手把这三项研究变成成熟的医疗工具,将公司现存的机器学习和人工智能系统与硅片、毫米波相控阵传感器等结合。

AI+超成像系统,“看”到疾病和危害

首先要提到的“超成像系统”,是一种广范围的电磁波谱成像技术,不仅可以获取人眼可见光形成的图像,还能模拟超出此范围的电磁波图像。

使用高性能相机和其他传感器,临床医生就能发现用药是否适合患者。“用这种超成像技术,人们就像是长了第三只眼,能发现我们日常所忽视的线索。”IBM技术总监Rashik Parmar说道。

尽管实现超成像的硬件已经出现,但要使其进入市场,还需做更多的工作。能够进行广泛光谱成像的仪器不是什么新鲜事物,但区别就是IBM要将其简化、小型化,并降低其制造成本,还要用认知算法来进行破译和可视化,让这项技术真正发挥其作用。

Parmar还补充道,IBM现在有很多“花里胡哨”的发明,但都能很快让它们变为可用性较高的产品。而在医疗应用上,简单例子的就是用超成像设备迅速看牙,或者为标准医疗射线检查提供更丰富的信息。

可能就在IBM计划的5年之内,这种机器会变成你身边的药理学、毒理学专家——最终,这种超成像会被整合到手机中,在吃饭或服药之前可以先扫描一下,看是否有有害物质或致敏源等。

AI+芯片实验室,精细疾病早诊

相似的,IBM也有可能会在几年内推出一种新的人工智能分析技术:芯片实验室。这种设备也就荷包大小,用一滴血或任意体液就能分析出细菌、病毒或预示着某种疾病的蛋白质。

Parmar表示,IBM从六七年前就开始探索“纳米纤维”这种概念了,那时是要做一种可以模拟气味的工具。

如果将纳米纤维与其他种类的传感器相结合,就能用纳米结构来检验体液,包括唾液、血液、液体活检的样品,从中分析潜在的疾病。再结合数字化制造和3D打印等技术,IBM就能把传感器放入定制化探针,帮助有效分析。

相比起需要等待数周的血检,芯片实验室不用花时间来把病毒培养至能够被监测到的量,而是直接通过传感器来追踪最为细微的生物标记。

这项技术最为厉害之处,可能在于它能让人们在出现症状之前就了解自己的患病可能。举个阿茨海默症的例子,在出现明显症状之前很长一段时间,患者的神经状态已经产生了显着改变。

如果定期检查血样,可以在阿茨海默症的早期就寻找到生物标记,迅速开始根据个人的情况制定治疗方案。

虽然这种能从一滴血分析疾病的技术对人工智能水平是个巨大挑战,但真正考验IBM公司把此种产品推向市场的,还是在于技术难度超高的硅片。“芯片的最小测量级别为20纳米,它能让你从一个相当细化的角度来观察病毒等物质,但要看到这个精细程度,在材料的制作上可是要花费巨大的心血。”

“芯片实验室”

AI+文字信息,形成精神疾病模型

精神疾病,是又一个需要人工智能技术来仔细咀嚼大量数据,化作有效医学见解的领域。在接下来的两年内,IBM会制造出能从人的讲话中诊断精神疾病的机器学习系统原型。

在精神疾病诊断中,患者的谈话一直是医生用以判断病情的重要因素。语速、音量、用语特点,都可以用于判断精神疾病。现在IBM把这个分析工作交给了人工智能,从患者与医生的交流,或人们自己在社交网站上写下的话语,都可以作为分析材料。

IBM能做到这一点,前提是他们已花费数年时间来研究精神、心理障碍与语言之间的关联,建立起了一套测量体系。“我们目前提上日程的研究,是要弄清这件事:对于特定的个体来说,某段话中的某些用语,能否帮助我们理解这个人的心理状态?”技术总监Parmar说道。

IBM早已有过建立医疗模型的尝试:沃森最早的商业化尝试,“蓝色巨人”认知计算机系统,就是癌症护理医师的助手。今天,公司还与医疗行业产生了不少的合作,建立各式各样的医疗认知工具原型。

例如,IBM透露Jupiter Medical Center(木星医疗中心)这家佛罗里达的地方医疗中心就会引进IBM沃森的肿瘤辅助诊疗技术。另外,它还与纪念斯隆凯特琳癌症中心(MSK)合作了癌症治疗培训项目。

除了精神分裂症、双向情感障碍、抑郁症等,IBM还会从可穿戴运动健身设备和医疗设备处获取数据,来辅助诊断帕金森症等神经疾病。虽然现在已经有医药健康专家把可穿戴的数据用在诊断判断上,但IBM希望用机器学习来加速这个进程,并能提供额外的见解。

Parmar说,其实美国和欧洲已经有人做了可穿戴数据的实验,也有教授把实验数据分享了出来,但没有人把这些数据综合到一起,研究这些数据中间是否有可关联之处,或者用整合的数据得出更深层次的理解。“用机器来处理和整合,恰好就是这个问题的答案。”


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@blueai.net.cn。

网友评论 匿名:

分享到

相关主题