由于操作过于频繁,请点击下方按钮进行验证!

TiN涂层高速钢刀具耐热性研究

  刀具材料的耐热性是判断其切削性能的重要特性。由于经TiN涂层后高速钢刀具表面摩擦特性得到改善,与未涂层的普通高速钢刀具相比,在相同切削条件下,其切削变形程度减小,因而产生的切削热减少,切削温度降低;又由于TiN化合物的导热系数较小,因而TiN涂层刀具表面温度场分布特征亦与未涂层高速钢刀具不同。笔者从微观角度分析研究了TiN薄膜的晶体结构类型与TiN涂层热相变特性之间的相互关系以及不同晶体结构类型的TiN薄膜随温度上升的变化规律。

  切削试验结果表明,TiN涂层刀具的耐磨性与TiN化合物的晶体特征关系密切。当TiN晶体具有间隙化合物特征时,其耐磨性大大优于有序固溶体结构的TiN涂层。沉积工艺试验表明,用C1工艺(电弧发生等离子体PVD法)沉积的TiN涂层为有序固溶体结构,而用C2工艺(等离子枪发射电子束离子镀)沉积的TiN涂层为间隙相化合物。显然,C2工艺优于C1工艺。

  切削变形与切削摩擦

  为了深入研究TiN涂层刀具的热学特性,首先讨论可转变为切削热的切削变形功和切削摩擦功。

  1 .TiN涂层对刀具切削变形的影响

  借助快速落刀装置观察TiN涂层刀具的切削变形程度,可知在相同的切削条件下,TiN涂层刀具第一变形区的剪切角比未涂层刀具约大4°~6°,未涂层刀具切屑底部滞流层变形程度相当严重,而TiN涂层刀具的切屑底部滞流层变形程度较轻。

  2. TiN涂层对刀-屑间平均摩擦角β的影响

  通过正交直角切削试验,测得TiN涂层刀具和未涂层刀具刀—屑间的平均摩擦角β。由测量结果可知,在相同的切削条件下,与未涂层刀具相比,TiN涂层刀具刀—屑间的摩擦角β较小(即TiN涂层与切屑底部的摩擦系数较小),这是因为刀具表面的TiN化合物在刀—屑摩擦面间起到了固体润滑剂的作用。

  3. TiN涂层对切屑变形系数ξ的影响

  由切削试验中两种不同刀具(在不同润滑条件下)的切屑变形系数ξ随切削速度V的变化规律可知:与未涂层刀具相比,TiN涂层刀具的切屑变形系数ξ值较小。这也表明,在切削过程中,由于TiN化合物的减摩作用,TiN涂层刀具的切屑变形程度较轻。

  4 .TiN涂层对刀-屑接触长度Lf的影响

  TiN薄膜与切屑间的减摩作用还导致了刀-屑接触长度Lf的缩短。刀-屑接触长度Lf的缩短使切削热不易被切屑带走,切削热易集中在刀尖(或刀刃)附近。红外热像仪测温试验也证实了这种现象。

  切削温度与温度场分布

  切削过程中用AGA780红外热像仪测量刀具表面的切削温度(即温度场分布)。

  切削试验采用正交自由切削,刀具主偏角=90°,刃倾角λs=0°,工件为薄壁管形。试验结果表明:在相同的试验条件下,与未涂层高速钢刀具相比,TiN涂层刀具的切削温度较低。如切削速度V=60m/min时,TiN涂层刀具表面最高温度为360℃,而未涂层刀具表面最高温度为450℃。这是因为切削时TiN涂层刀具切削区的变形功、摩擦功较小,因而产生的切削热量较小。刀具表面切削温度低意味着在使用TiN涂层刀具时,可适当提高切削速度,进而提高切削效率。

  两种不同刀具的切削温度场分布规律亦存在明显差异。TiN涂层刀具的最高温度点位于(接近)刀尖(刀刃)处,而未涂层刀具的最高温度点距离刀尖约为0.25mm。究其原因,一是因为TiN涂层刀具刀—屑接触长度Lf较短,切削热不易被切屑带走;二是由于TiN化合物的导热系数较小,切削热沿刀面传导的速度较慢,因而导致切削热易集中于刀尖(或刀刃)处。因此,为了改善TiN涂层刀具的散热条件,应适当改进TiN涂层刀具几何参数的设计(适当加大刀尖圆弧半径rε及刃口钝圆半径rn),以延长TiN涂层刀具的切削寿命。

  TiN晶体结构及其热相变规律

  借助高温X射线衍射仪观察TiN晶体结构的热相变规律。试验条件:C-oK-α射线,管电压50KV,管电流100mA,大气气氛。首先在室温下记录TiN晶体衍射峰;然后以每分钟40℃的温升速度、每间隔100℃保温35分钟,分别记录TiN晶体的相变衍射峰。试验结果表明,用不同沉积工艺方法得到的TiN晶体的热相变特性差异很大。

  (1)由电弧发生等离子体PVD法(C1工艺)沉积的TiN涂层试样结果分析:在室温时,TiN薄膜为(1 1 1)、(2 2 0)双重择优取向晶体;当温度升至200℃时,TiN晶体的(1 1 1)晶面衍射峰强度没有变化,而(2 2 0)晶面衍射峰强度增大,在低角度(2θ=26°左右)处出现宽波峰;温升至400℃时,TiN晶体的(1 1 1)晶面衍射峰完全消失,而(2 2 0)晶面衍射峰强度不变,低角度处的宽波峰强度增大;温升至800℃时,TiN晶体的衍射峰完全消失,而低角度处的宽波峰强度亦越来越弱。

  由金属学理论可知,由C1工艺沉积的TiN晶体属有序固溶体结构。由高温X射线衍射理论可知,有序固溶体TiN的有序度转变临界温度低于600℃,因而这种晶体结构的TiN高温特性较差。在室温时,TiN晶体结构属长程有序固溶体结构,随着温度的升高,TiN晶体的长程有序度逐渐降低,并转变为短程有序固溶体。在400℃时,TiN的(1 1 1)晶面衍射峰消失,600℃时,其长程有序度为零,即转变为完全无序。当长程有序度逐渐下降时,对低角度处出现的宽波峰可认为是TiN薄膜由晶体逐渐转变为非晶体物质。切削磨损试验表明,这种非晶态物质的耐磨性较差,因而这种有序固溶体结构的TiN涂层薄膜的耐磨性并不理想。

  (2)用等离子枪发射电子束离子镀(C2工艺)沉积的TiN涂层试样的高温衍射试验结果分析:室温时,TiN晶体具有明显的(1 1 1)晶面择优取向,随着温度升高,涂层表面原子热振动加剧,600℃时TiN表面脱N而形成Ti2N+N;当温度达到960℃时,Ti2N再次脱N而形成Ti+N;TiN的始氧化温度为800℃,氧化物为TiO(R),γ-FeTiO2,?ε-FeTiO和TiO等。

  上述试验结果及其分析表明,用C2工艺沉积的TiN晶体是间隙相化合物,其晶体结构比较稳定。切削试验表明,具有间隙相晶体结构的TiN涂层刀具的耐热性、耐磨性均优于有序固溶体结构的TiN涂层刀具。间隙相化合物TiN的晶体结构稳定,高温特性优良,有利于提高TiN涂层高速钢刀具的工作寿命。

  (1)由于TiN化合物的减摩作用,用TiN涂层高速钢刀具进行切削时,其切削变形和切削摩擦较缓和,产生的切削热较少,因而切削温度较低。

  (2)TiN涂层刀具的刀-屑接触长度较短, TiN化合物的导热系数较小,因而切削热易集中在刀尖(或刀刃)处。为了改善TiN涂层刀具的散热条件,应适当加大刀具的刀尖圆弧半径rε和刃口钝圆半径rn。

  (3)TiN涂层刀具的热学特性与沉积工艺密切相关,同时与TiN晶体的结构类型密切相关。用电弧发生等离子体PVD法(C1工艺)沉积的TiN薄膜具有有序固溶体晶体结构,其耐热性、耐磨性均较差;而用等离子枪发射电子束离子镀(C2工艺)沉积的TiN涂层为间隙化合物结构,具有稳定的晶体结构,具有较好的耐热、耐磨性能。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@blueai.net.cn。

网友评论 匿名:
相关链接
  • 拉曼聚焦能源材料领域的应用研究
  • 23-08-04
  • “您知道吗”完结篇|雷尼绍光栅高级诊断工具ADT系列的妙用
  • 23-08-04
  • 欢迎走进为您专属定制的“技术之家 ”
  • 23-08-04
  • 数字化时代仿真教学,真实模拟机床让实训更简单
  • 23-08-04
  • 车身间隙面差高效精确测量,助力汽车感知质量提升
  • 23-08-04
  • INTEGREX i-630 V | 难切削复杂盘类零件的加
  • 23-08-04
  • 联合磨削集团在 2023 年汉诺威 EMO 展会上展示产品亮点
  • 23-08-03
  • 株洲钻石参展2023世界汽车制造技术暨智能装备博览会
  • 23-07-31
  • QC20系列球杆仪|为二手机床交易“保驾护航”
  • 23-07-31
  • 走进雷尼绍|最新市场动态
  • 23-07-31
  • 服务专栏|3min带你了解工业CT设备使用的关键要求
  • 23-07-31
  • 蔡司医疗行业质量创新技术交流日成功举办
  • 23-07-31
  • PolyWorks|AR™ 2023新的突破
  • 23-07-28
  • PWCL2023 Workshop1回放:混合现实:自激光跟踪仪以来,大尺寸3D测量领域里的最重大进展
  • 23-07-28
  • 海克斯康受邀出席2023中国仪器仪表学会学术年会
  • 23-07-28
  • 山东省人大常委会副主任、省工商联主席王随莲带队调研海克斯康
  • 23-07-28
  • 海克斯康关节臂测量技术问世50年感恩回馈
  • 23-07-28
  • 服务专栏| 零件检测从2天到2小时,看看这家德国公司做对了什么…..
  • 23-07-27
  • 赋能高质量发展,自动化加快测量周期
  • 23-07-27
  • 客户成就 | 蔡司光学测量,为高品质卫浴带来全新可能
  • 23-07-27
  • 分享到

    相关主题