由于操作过于频繁,请点击下方按钮进行验证!

减振器对汽车冲击性能的影响分析

  汽车在路面上行驶时,除了随机路面外,偶尔也会遇到冲击路面,如减速带、路面凸块和凹坑、铁路交叉口、路面接缝等,这类路面统称为冲击路面,其特点是冲击较大,冲击的产生间隔足够长的距离,这样在下次冲击来之前,车辆的振动已充分衰减。来自路面的剧烈冲击,通过轮胎、悬架、车身和座椅传给人体,同时会引起悬架和车身的跳动。

  大冲击舒适性是用户评价汽车乘坐舒适性的重要内容,也是汽车厂家在汽车开发过程中需要控制的重要指标之一。在汽车开发的底盘调校阶段,一般通过减振器阻、弹簧和缓冲块来优化汽车的大冲击乘坐舒适性,其中减振器阻尼力的优化最为重要和复杂。

  2 汽车冲击性能分析评价方法

  2.1 冲击乘坐舒适性评价指标

  当汽车遇到路面冲击时,会导致以下汽车振动响应:

  1) 主振动(Primary Ride):车体的刚体振动响应,如俯仰和侧倾,乘员有时会感受到悬架限位块的撞击。

  2) 冲击(Impact):乘员通过座椅和地板感受到的来自路面的较大冲击,以及车体上下运动速度迅速改变。

  本文用地板、座椅等所关心位置的最大(绝对值)的加速度,以及车身的最大振动俯仰角和振动衰减的快慢作为大冲击振动下的客观评价指标。

  2.2 大冲击仿真分析方法

  目前,大冲击CAE 分析方法主要有两类,一是基于平顺性轮胎模型的整车道路仿真分析方法,二是基于四通道的整车台架仿真分析方法。

  第一种方法必须使用平顺性轮胎模型,常用的平顺性轮胎模型主要有ftire、swift 轮胎模型等,并配合使用冲击路面模型,冲击路面模型主要有三角形凸块路面、矩形凸块路面、锯齿形凸块路面等[1],见图1。

图1 基于平顺性轮胎模型的整车道路仿真分析

  第二种方法用四通道实验台模拟路面垂向冲击激励[4],可以使用普通的操稳轮胎模型,如Pacjka 轮胎模型,见图2。

 图2 基于四通道的整车台架仿真分析

  第一种方法能够同时仿真分析大冲击引起的纵向和垂向振动响应,与比较接近实际情况,仿真结果较精确,但国内对平顺性轮胎模型研究较少,而且没有建立平顺性轮胎模型的试验条件,限制了其推广应用。第二种方法只能仿真路面冲击引起的垂向振动响应,与实际情况有差距,但可避开使用平顺性轮胎模型,另外,操稳轮胎模型国内研究较多,也有建立操稳轮胎模型的试验条件。

  由于减振器阻尼力主要影响汽车的垂向振动响应,本文使用基于四通道的仿真分析方法。

  3 基于四通道的路面冲击激励仿真分析

  结合公司某轿车产品开发,建立基于四通道的仿真分析模型,分别对不同载荷、不同减振器阻尼参数,分析对整车乘坐舒适性的影响。

  3.1 整车虚拟样机模型的建立

  整车模型由前悬架模型、后悬架模型、转向系统模型、车身简化模型、动力系统功能模型、轮胎模型、制动系统功能模型、稳定杆模型组成。弹簧、减振器、轮胎刚度、弹性衬套和缓冲块的力学特性曲线均由试验测得。整车模型的准确性是通过将K&C 仿真结果与已完成试验的结果对比进行校核的,通过与K&C 试验的结果数据对比,吻合度良好。路面为三角形凸块路面。

  3.2 冲击激励仿真分析和评价

  利用建立的四通整车模型进行仿真分析,仿真分析工况为半载状态,车速分别为10,20,30,40,50,60km/h。改变减振器低速段阻尼和高速段阻尼,仿真分析其对乘坐舒适性的影响,分析结果见表1 所示。图3 是后排中间位置垂向加速度随车速变化曲线,图4 分是车身俯仰角随车速变化曲线,图5 是40km/h 时的车身俯仰角变化曲线。

图3 后排中间位置垂向加速度

图4 车身俯仰角

图5 车身俯仰角曲线

表1 仿真分析结果


  5 结束语

  1)基于四通道的整车平顺性模型可方便地仿真分析汽车大冲击乘坐舒适性,除了分析减振器对冲击舒适性的影响外,也可同时分析轮胎刚度、缓冲块间隙和刚度、弹簧、硬点坐标等对大冲击乘坐舒适性的影响,提出优化匹配方案。

  2)本文通过仿真分析提出了后减振器优化方案,经实车验证乘坐舒适性得到了提高。

  3)用本文所述的方法,只能分析垂向冲击振动,没有考虑纵向冲击振动的影响,今后应加强纵向冲击激励对乘坐舒适性的影响分析,另外,可将车身柔性化,使仿真分析结果更接近实际情况。

  6 参考文献

[1] Manfred Baecker, Axel Gallrein. Simulating very large tire deformation with CDTire. 2009 SAE
09M-0275
[2] 陈荫三,余强译. 汽车力学(第4 版)[M]. 北京:清华大学出版社,2009.9
[3] 国际汽车标准ISO2631-1:1997(E)
[4] Adams/Car Ride reference


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@blueai.net.cn。

网友评论 匿名:
相关链接
  • PolyWorks|AR™ 2023新的突破
  • 23-07-28
  • PWCL2023 Workshop1回放:混合现实:自激光跟踪仪以来,大尺寸3D测量领域里的最重大进展
  • 23-07-28
  • 设计仿真 |电池热失控仿真与电力电子散热仿真解决方案
  • 23-07-28
  • NCSIMUL过程模型及刀路的灵活显示助力仿真分析高效率
  • 23-07-28
  • 设计仿真 | 直播预告-MSC Nastran模型检查介绍
  • 23-07-28
  • 服务专栏| 零件检测从2天到2小时,看看这家德国公司做对了什么…..
  • 23-07-27
  • 客户成就 | 蔡司光学测量,为高品质卫浴带来全新可能
  • 23-07-27
  • CONVERGE 邀您齐聚设计之都共创美好未来!
  • 23-07-25
  • 困扰这家行业先锋企业多年的计量难题,终于有解了!
  • 23-07-21
  • GOM Volume Inspect Pro 亮点功能
  • 23-07-21
  • 质量管理 | ​Q-DAS上海公开课来啦!(第三季度)
  • 23-07-21
  • 生产制造 | 金属切削-空调压缩机涡旋盘加工解决方案
  • 23-07-21
  • 设计仿真 | Romax助力NBC研发更高效率的轮毂轴承
  • 23-07-21
  • 海克斯康设计仿真 | 直播预告-原来CFD分析结果还有这么多样的展现形式!
  • 23-07-21
  • 打破传统,布局未来 | ​温泽齿轮测量技术与应用专题研讨会在上海圆满召开
  • 23-07-20
  • 高光亮面检测不再难,这套方案让瑕疵无处遁形
  • 23-07-20
  • “湘”遇长沙,海克斯康智能制造中国行第二站圆满落幕
  • 23-07-20
  • 三星研发研究院打造新型热管理系统,优化大型锂电池组设计
  • 23-07-19
  • PolyWorks|DataLoop™ 2023 新的突破
  • 23-07-18
  • PolyWorks 2023 三城用户会活动圆满收官!
  • 23-07-18
  • 分享到

    相关主题